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Robust and Tractable Estimation in High Dimensions

1 Robust subgaussian estimation of a mean vector in nearly linear
time (to appear in Annals of Stat), with G.L.

2 A spectral algorithm for robust regression with subgaussian rates
(submitted)

3 Robust subgaussian estimation with VC-dimension. (submitted)

4 On the robustness to adversarial corruption and to heavy-tailed data
of the Stahel-Donoho median of means, with G.L. (submitted)

5 Optimal robust mean and location estimation via convex programs
with respect to any pseudo-norms, with G.L. (submitted)
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Today ?

• General introduction ∼ 10 min.

• Some contributions from paper (1), (2). ∼ 15 min.

• Some contributions from (3), (5). ∼ 10 min.

• Some contributions from (4) ∼ 5 min.
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Outline

1 Introduction : Robustness in high dimension

2 Fast mean estimation

3 Mean estimation in any norm

4 Stahel-Donoho Estimation
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Two main problems

1) Observations can be corrupted :

• Mistakes in copying, computing, experimenting, etc.

• More than ever with internet data !

• Adversarial attacks.

µ̂1 can be made arbitrarily far from µ by changing one observation.

→ Robustness to adversarial contamination
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Two main problems

2) We study the size of the confidence region r(δ) as a function
of the failure probability δ.

P(|µ̂1 − µ| > r(δ)) ≤ δ

• How does r(δ) behave when δ → 0 ?

• When X ∼ N (µ, σ),

P

(
|µ̂1 − µ| >

σ
√

2 ln(1/δ)√
N

)
≤ δ
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Two main problems

When X is heavy-tailed :
• If we only assume finite second-moment, Chebyshev inequality

for the empirical mean gives :

P

(
|µ̂1 − µ| > σ√

Nδ

)
≤ δ

We would like to find estimators so that

r(δ) ∝
σ
√
ln(1/δ)√
N

→ Robustness to heavy-tails
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Subgaussian rate

We would like to have instead

r(δ) ∝
σ
√
ln(1/δ)√
N

• Called subgaussian rate.

• Best possible rate in one dimension, achieved by [Catoni 2012].

Goal : We want our estimators to be as good as if the data were
Gaussian, even when the real sample is heavy tailed and an ϵ
fraction of it is corrupted. Setting
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Litterature review

Robustness to outliers:
• 1960, 1964 - [Tuckey, Huber] → First contamination models.
• 1984 - [Huber, Hampel] → General theory of robustness

to outliers, in one dimension.

Robustness to heavy-tail :
• Formalised in [Catoni, 2012]

Robustness to both at the same time :
• Contribution of [Depersin, Lecué 2019]
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What confidence region in high dimension ?

• Once again, benchmark = i.i.d Gaussians.

• Borell-TIS : w.p. ≥ 1 − δ

||X̄ − µ|| ≤ C

(√
TrΣ
N

+

√
||Σ||op log(1/δ)

N

)

• Decoupling between the deviation term (
√

σ log(1/δ)
N ) and

the complexity term (
√

σd
N ).

• Can we get this rate (plus a cost for adversarial contamination
σϵ1/2) with heavy tailed and corrupted data, non
asymptotically ? Setting
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• Can we get the gaussian rate with heavy tailed and corrupted
data, non asymptotically ? Setting

Theorem (Lugosi-Mendelson 2017)

With probability ≥ 1 − e−C1K , for all vector v ∈ B2(Rd),
there are at least 9K/10 blocks k such that

| ⟨v , X̄k − µ⟩ | ≤ C2rK := C2

(√
TrΣ
N

+

√
||Σ||opK

N

)

where X̄k = 1
Card(Bk )

∑
i∈Bk

Xi MOM

→ Starting point of my thesis !
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W.p. ≥ 1 − e−C1K , ∀v ∈ B2(Rd), there are at least 9K/10 blocks
k such that

| ⟨v , X̄k − µ⟩ | ≤ C2rK := C2

(√
TrΣ
N

+

√
||Σ||opK

N

)

Taking K = C3⌊|O| ∨ log(1/δ)⌋, we get, w.p. ≥ 1 − δ

| ⟨v , X̄k − µ⟩ | ≤ C4

(√
TrΣ
N

+

√
||Σ||op log(1/δ)

N
+
√
||Σ||opϵ

)

→ Optimal sub-gaussian rate with optimal price for
contamination!
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Key insight :

• With probability > 1 − e−CK , this holds uniformly for all
vector v ∈ B2(Rd).

• There is a huge gap between supv Med ⟨v , X̄k − µ⟩ (∼ rK ) and

Med supv ⟨v , X̄k − µ⟩ (∼
√

Tr(Σ)K
N ).

• For most X̄k , there is a v so that ⟨v , X̄k − µ⟩ is large, but for
a given v , a large fraction (9/10) of the X̄k checks
⟨v , X̄k − µ⟩ ≤ rK .
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• This leads to a theoretical estimator :

µ̂ ∈
⋂

v∈B2(Rd )

I80(X1, ...,Xn, v)

with
I80(X1, ...,Xn, v) = {x ∈ Rd | ⟨x , v⟩ ∈ [A(X, v),B(X, v)]},
A(X, v) = Q10(⟨Xi , v⟩), and B(X, v) = Q90(⟨Xi , v⟩).

• Computationally intractable.
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Two other ways to get good high dimensional estimators.
The same idea formulated differently :

• First formulation :

µ̂ = argmin
a∈Rd

max
v∈B2(Rd )

∑
k

1⟨v ,X̄k−a⟩>2rk .

• Second formulation (Depersin-Lecué) :

µ̂ = argmin
a∈Rd

max
v∈B2(Rd )

Med(⟨v , X̄k − a⟩).

Idea : Start from a point a, solve
v∗ = argmaxv∈B2(Rd )

∑
k 1⟨v ,X̄k−a⟩>2rk and descend along v∗.
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Cherapanamjeri, Flammarion, Bartlett (2018)

Iterative descent method : try to find
v∗ = argmaxv∈B2(Rd ) 1⟨v ,X̄k−xt⟩>2rk at each step t and "descend".

max
∑

bi

b2
i = bi

||v ||2 = 1
∀i , bi ⟨u, X̄i − xc⟩ ≥ 2bi rK

→ Z = (1, b, v)T (1, b, v)

Z ∈ R(1+k+d)×(1+k+d)

max
∑

Z1,i

Z1,1 = 1
Zi ,i = Z1,i∑

Zj ,j = 1

∀i , bk⟨((Zi ,j)j , X̄i − xc⟩ ≥ 2Zi ,i rk

Z ⪰ 0
(rank(Z ) = 1)
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Cherapanamjeri, Flammarion, Bartlett (2018)

Iterative descent method : try to find
v∗ = argmaxv∈B2(Rd ) 1⟨v ,X̄k−xt⟩>2rk at each step t and "descend".

• This relaxation gives a good approximation of v∗.

• This relaxation is tractable (but somehow costly)

O(K 3.5 + K 2d)

• Can we get something faster using a different heuristic ?
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Second formulation (Depersin-Lecué) :

µ̂ = argmin
a∈Rd

max
v∈B2(Rd )

Med(⟨v , X̄k − a⟩).

, Good rate : supremum over v outside the Median.

/ Not tractable (Median operator).

, No need to know rk .

, Maybe possible to relax.
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How to relax a hard combinatorial problem ?

Contribution : replace the median by a minimum over
weights :

∆K = {(ωk) : k = 1, ...,K |
∑

ωk = 1 , 0 ≤ ωk ≤ 2/K}

max
v∈B2(Rd )

Med(⟨v , X̄k − a⟩2) → max
v∈B2(Rd )

min
ω∈∆K

(
∑
k

ωk ⟨v , X̄k − a⟩2)

→ We know that it is possible to compute efficiently :

argmax
M⪰0,Tr(M)=1

min
w∈∆K

⟨M,

K∑
k=1

ωk(X̄k − xc)(X̄k − xc)
⊤⟩

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin



Introduction : Robustness in high dimension Fast mean estimation Mean estimation in any norm Stahel-Donoho Estimation Appendix

∆K = {(ωk) : k = 1, ...,K |
∑

ωk = 1 , 0 ≤ ωk ≤ 2/K}

max
v∈B2(Rd )

min
ω∈∆K

(
∑
k

ωk ⟨v , X̄k − a⟩2)

What link with :

argmax
M⪰0,Tr(M)=1

min
w∈∆K

⟨M,
K∑

k=1

ωk(X̄k − xc)(X̄k − xc)
⊤⟩

→ Can we recover v∗ from M∗ ? Is M∗ aprox. of rank one ? How
to use the theorem from [Lugosi-Mendelson] ?
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How to relax a hard combinatorial problem ?

max
v∈B2(Rd )

Med(⟨v , X̄k − a⟩2) (Our "second formulation")

↕

max
v∈B2(Rd )

min
ω∈∆K

(
∑
k

ωk ⟨v , X̄k − a⟩2)

↕

argmax
M⪰0,Tr(M)=1

min
w∈∆K

⟨M,

K∑
k=1

ωk(X̄k − xc)(X̄k − xc)
⊤⟩
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Extension of Lugosi-Mendelson 17

Our main technical contribution :

Theorem (Depersin-Lecué 2020)

If K ≥ c1|O| , then, with probability ≥ 1−exp(−c2K ), for all
symmetric matrices M ⪰ 0 such that Tr(M) = 1, there are at
least 9K/10 of the blocks for which ||M1/2(X̄k−µ)||2 ≤ c3rK

• With M = vvT , we have [Lugosi-Mendelson].
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Extension of the first Theorem

• With M = vvT , we have [Lugosi-Mendelson].

• The proof follows principles from Goemans and Williamson :
• Suppose that ||M1/2(X̄k − µ)||2 ≥ c3rK for K/10 blocks at

least, and draw G ∼ N (0,M)

• Then we can prove probabilistically that there exists G such
that for K/20 blocks | ⟨G , X̄k − µ⟩ | ≥ C2rK

• We use [Lugosi-Mendelson] to bound that probability.
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Some comments

• No need to know rK !

• Computational time O(K 2d) → best possible ? (open question)

• Adaptive choice of K ∼ log(1/δ) via Lepski’s method,
whenever rK can be computed (we decrease K as long as
||µ̂(K) − µ̂(K ′)||2 ≤ 2r(K ′) for all K ′ > K ).
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Regression
Contribution : concrete implementation of such methods.
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Other norms

Theorem (Lugosi Mendelson 2017)

With probability ≥ 1 − e−C1K , for all vector v ∈ B2(Rd),
there are at least 9K/10 blocks k such that

| ⟨v , X̄k − µ⟩ | ≤ C2rK := C2

(√
TrΣ
N

+

√
||Σ||opK

N

)

• For all vector v ∈ B2(Rd) : what if B2(Rd) is replaced by
other set C ?
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In more recent work (Lugosi-Mendelson [2019], Depersin-Lecué
[2020]) there is an answer :

Theorem (Rademacher complexity)

With probability ≥ 1 − e−C1K , for any set C

sup
v∈C

Med(⟨v , X̄k − µ⟩) ≤ C1

√
RΣ(C )

N
∨
√

diamΣ(C )K

N

where RΣ(C ) = E(supv∈C ⟨v ,
∑N ϵi (Xi − µ)⟩)2/N and

diamΣ(C ) = supv∈C E(⟨v ,Y − µ⟩2)

In the case C = B2(Rd), RΣ(C ) = Tr(Σ) and diamΣ(C ) = ||Σ||op
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sup
v∈C

Med(⟨v , X̄k − µ⟩) ≤ C1

√
RΣ(C )

N
∨
√

diamΣ(C )K

N

× Not always sharp → problems with heavy-tailed distribution.

× Take X j
1 =

√
NdB(1/Nd) and C = {e1, e2, ..., en}

× RHS ∼
√
d/N whereas LHS ∼

√
1/N.
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Theorem (VC Dimension)

For any set C , with probability ≥ 1 − e−C1K

sup
v∈C

Med(⟨v , X̄k − µ⟩) ≲
√

diamΣ(C )VC(C )

N
∨
√

diamΣ(C )K

N

where VC is the VC-dimension of the set C .

In the case C = B2(Rd), diamΣ(C )VC(C ) = ||Σ||opd ≥ Tr(Σ)
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For sparse structure : Ss = {x ∈ Rd |
∑

1xi ̸=0 ≤ s},
C = B2(Rd) ∩ Ss

× RΣ(C ) can be as large as ∼ Tr(Σ)
→ Can be smaller with additional assumptions (log(d) moments

on X1).
→ Without them : RΣ(C ) does not depend on s !

✓ diamΣ(C )VC (C ) ∼ ||Σ||ops log(d)
→ With only two moments !

The same goes for C = {M ∈ BF (Mn)| rg(M) ≤ k}.

→ Application to sparse mean estimation and low-rank
estimation under L2 assumptions.
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What can we hope at best when estimating the mean w.r.t. any
norm ?

Theorem (Lugosi-Mendelson 2019)

If for all µ∗ ∈ Rd and all δ, µ̂ : RNd → Rd satisfies
PN
µ∗ [||µ̂− µ∗||C ≤ r∗] ≥ 1 − δ then,

r∗ ≥ c√
N

(
sup
η>0

η
√

logN(Σ1/2C , ηBd
2 )

+ sup
v∈C

||Σ1/2v ||2
√
log(1/δ)

)
N(Σ1/2C , ηBd

2 ) = minimal number of translated of ηBd
2

needed to cover Σ1/2C .
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Contribution : better lower bound.

Theorem (Depersin-Lecué 2020)

If for all µ∗ ∈ Rd and all δ, µ̂ : RNd → Rd satisfies
PN
µ∗ [||µ̂− µ∗||C ≤ r∗] ≥ 1 − δ then,

r∗ ≥ C max

(
ℓ∗(Σ1/2C )√

N
, sup
v∈C

||Σ1/2v ||2

√
log(1/δ)

N

)
.

ℓ∗(Σ1/2C ) = sup
(
⟨G , x⟩ : x ∈ Σ1/2C

)
= E ||Σ1/2G ||C , for

G ∼ N (0, Id)
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S = B2,Σ = Id S = B2,Σ ̸= Id S = Ss ,Σ = Id
Entropy d Tr(Σ)/ log(d) s log(d/s)

Gaussian MW d Tr(Σ) s log(d/s)

Rademacher d Tr(Σ) d

VC-dimension d d s log(d/s)
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What norm to use ?

Question: What norm ∥·∥S should we use to estimate µ ?
Benchmark: If G1, . . . ,GN ∼ N (µ,Σ) the confidence region with
the lowest volume are the ellipsoids ḠN + r∗Σ1/2Bd

2 .
Moreover,

µ ∈ ḠN + r∗Σ1/2Bd
2 ⇔

∥∥∥Σ−1/2(ḠN − µ)
∥∥∥

2
≤ r∗

so the norm leading to the smallest confidence intervals is∥∥∥Σ−1/2·
∥∥∥

2
: u ∈ Rd →

∥∥∥Σ−1/2u
∥∥∥

2
= sup

(
⟨u, v⟩ : v ∈ Σ−1/2Bd

2

)
that is ∥·∥C for C = Σ−1/2Bd

2 .

Problem: Σ is not known.
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What minimax rate ?

The subgaussian minimax rate for
∥∥Σ−1/2·

∥∥
2 is√

ℓ∗(Σ1/2S)

N
+ sup

v∈C

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

N
=

√
d

N
+

√
log(1/δ)

N

for C = Σ−1/2Bd
2 .

It is reached by some known estimators for C = Σ−1/2Bd
2 .

... but these estimators use Σ in their construction.

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin



Introduction : Robustness in high dimension Fast mean estimation Mean estimation in any norm Stahel-Donoho Estimation Appendix

Stahel-Donoho Depth

Def. [Stahel 81][Donoho 82]

The Stahel-Donoho Outlyingness of a point x ∈ Rd regarding
(zk)k ∈ Rd is

SDO(x) = sup
∥v∥2=1

| ⟨x , v⟩ − Med(⟨zk , v⟩)|
Med(| ⟨zk , v⟩ − Med(⟨zk , v⟩)|)

The SDO median is µ̂SDO ∈ argmin (SDO(x) : x ∈ Rd)
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Stahel-Donoho Depth

µ̂SDO ∈ argmin (SDO(x) : x ∈ Rd)

• affine-equivariant.

• best breakdown point among affine-equivariant estimators
[Tyler, 94].

• √
n-consistent [Maronna, Yohai, 95] and asymptotically normal

[Zuo, Cui, He, 04] → no non-assymptotic results !

• Open problem to compute the SDO of a point.
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Idea: To have non-asymptotic results, we use block-means

X̄1 =
1

|B1|
∑
i∈B1

Xi , · · · , X̄K =
1

|BK |
∑
i∈BK

Xi

in the SDO function

SDOK (x) = sup
∥v∥2=1

| ⟨x , v⟩ − Med(⟨X̄k , v⟩)|
Med(| ⟨X̄k , v⟩ − Med(⟨X̄k , v⟩)|)

,

We consider the associated estimator

µ̂SDO
K ∈ argminµ∈Rd SDOK (x)
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Main contribution :

Theorem (Depersin-Lecué 2021)

Under some technical conditions, taking O ∨ d ≲ K , with
probability at least 1 − exp(−c1K )

∥∥∥Σ−1/2(µ̂SDO
MOM,K − µ)

∥∥∥
2
≤ c2

√
K

N
.

As K ≳ |O| ∨ d and log(1/δ) ∼ K , we have the subgaussian rate :√
K

N
∼
√

d

N
+

√
log(1/δ)

N
+

√
|O|
N

.

We can achieve a better cost regarding contamination |O|
N with

additional hypothesis on how the CDF in each direction behaves
around the mean.Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin
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Thank you !
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Our setting

• (X̃1, ..., X̃N), N independent and identically distributed
observations ∈ R.

• E(X̃1) = µ → to estimate

• E((X̃1 − µ)(X̃1 − µ)T ) = σ2 unknown.

• Adversarial contamination: there is (random) set O such that,
for i ∈ Oc ,Xi = X̃i

• The set O is not independant of {X̃i : i = 1, ...,N}
• {Xi : i ∈ O} may have arbitrary dependance structure.

• |O| ≤ ⌊εN⌋ → fixed proportion

• We observe {Xi : i = 1, ...,N} back
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Our setting

• (X̃1, ..., X̃N), N independent and identically distributed
observations ∈ Rd .

• E(X̃1) = µ → to estimate

• E((X̃1 − µ)(X̃1 − µ)T ) = Σ unknown.

• Adversarial contamination: there is (random) set O such that,
for i ∈ Oc ,Xi = X̃i

• The set O is not independant of {X̃i : i = 1, ...,N}
• {Xi : i ∈ O} may have arbitrary dependance structure.

• |O| ≤ ⌊εN⌋ → fixed proportion

• We observe {Xi : i = 1, ...,N} back
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Median of Mean Paradigm

• K equal-size blocks B1, . . . ,BK ⊂ {1, ...,N}
• We compute X̄k = 1

|Bk |
∑

i∈Bk
Xi where |Bk | = N/K

• Our estimator is µ̂K = Med{X̄k : k = 1, ...,K}.

1.8 1.65︸ ︷︷ ︸
1.72

1.50 170︸ ︷︷ ︸
85.7

1.78 1.68︸ ︷︷ ︸
1.73︸ ︷︷ ︸

1.73

→ µ̂3 = 1.73

• µ̂3 = 1.73 while µ̂1 = 29.6.
Back
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• Choosing K = C1⌊|O| ∨ log(1/δ)⌋, we get

Theorem (Devroye and al-2016)

With probability ≥ 1 − δ,

|µ̂K − µ| ≲ σ

√
log(1/δ)

N
∨
√

|O|
N

• σ
√

log(1/δ)
N → robustness to heavy-tails, optimal [Catoni, 2012].

• σ
√
ϵ → robustness to outliers, optimal [Diakonikolas, 2016].
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Key Insights of the proof

What does the median bring ?

• For robustness to heavy-tail, we want strong (exponential)
probability bounds → Hoeffding’s inequality → bounded variables.

• Median in [µ− r , µ+ r ] ⇐ Z :=
∑K

k=1 1X̄k∈[µ−r ,µ+r ] > 1/2K
→ we study the deviation of Z , a sum of bounded variables.

• Hoeffding’s failure probability ∼ e−K → we take K ≳ log(1/δ)

• If K > 4|O|, no more than 1/4 of block is corrupted. If some
property is true for a fraction α of the "initial" blocks, it will still be
true for a fraction > α− 1/4 after corruption.
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Litterature review

MOM principle appeared in:
• 1983 - [Nemirovsky and Yudin] → Stochastic optimization
• 1986 - [Jerrum, Valiant and Vazirani] → Computer science
• 2002 - [Alon, Matias and Szegedy] → Space complexity of an

algorithm
Application of the MOM principle in

• Multi-armed bandit problem : [Bubeck, Cesa-Bianchi, Lugosi,
2013]

• Robustness to heavy-tail : [Hsu, Sabato, 2013], [Devroye,
Lerasle, Lugosi, Oliveira, 2016]

• Regression : [Hsu, Sabato, 2013], [Minsker, 2015],
• Learning theory : [Brownless, Joly, Lugosi, 2015], etc.
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By what should we replace the Median ?

→ Coordinate-wise median of means

rδ =
√
dσ

√
ln(d/δ) +O√

N
(→

√
Tr(Σ)ln(d/δ)

N
+
√

Tr(Σ)ϵ)

→ Wrong rate !

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin



Introduction : Robustness in high dimension Fast mean estimation Mean estimation in any norm Stahel-Donoho Estimation Appendix

By what should we replace the Median ?

→ "Geometric median" of means or Fermat Point

µ̂ = argmina
∑
k

|X̄k − a|

rδ =
√
dσ

√
ln(1/δ) +O√

N
(→

√
Tr(Σ)ln(1/δ)

N
+
√

Tr(Σ)ϵ)

→ Wrong rate !
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A graphic illustration of LM 17.
• Idea : quantile of block-mean in all possible directions !
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A graphic illustration of LM 17.
• Idea : quantile of block-mean in all possible directions !
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Looks like...
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A graphic illustration of LM 17.
• Idea : quantile of block-mean in all possible directions !
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A graphic illustration of LM 17.
• Idea : quantile of block-mean in all possible directions !
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Def. For all v ∈ Sd−1
2 , Wv : p ∈ (0, 1) → H

(−1)
v (p)

Hv (r) = P

 1√
N/K

N/K∑
i=1

⟨Σ−1/2(X̃i − µ), v⟩ ≥ r

 .

Hypothesis: ∃0 < ϵ < 1/4, φl(ϵ) < φu(ϵ) so that ∀v ∈ Sd−1
2 ,

max

(
Wv

(
1
4
− ϵ

)
−Wv

(
1
2
+ ϵ

)
,Wv

(
1
2
− ϵ

)
−Wv

(
3
4
+ ϵ

))
≤ φu(ϵ)

and

min

(
Wv

(
1
4
+ ϵ

)
−Wv

(
1
2
− ϵ

)
,Wv

(
1
2
+ ϵ

)
−Wv

(
3
4
− ϵ

))
≥ φl(ϵ).

back
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