Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems

Jules Depersin

PhD Defense CREST-ENSAE 20/12/2021

Robust and Tractable Estimation in High Dimensions

- Robust subgaussian estimation of a mean vector in nearly linear time (to appear in Annals of Stat), with G.L.
- A spectral algorithm for robust regression with subgaussian rates (submitted)
- 3 Robust subgaussian estimation with VC-dimension. (submitted)
- On the robustness to adversarial corruption and to heavy-tailed data of the Stahel-Donoho median of means, with G.L. (submitted)
- **6** Optimal robust mean and location estimation via convex programs with respect to any pseudo-norms, with G.L. (submitted)

Today?

- General introduction \sim 10 min.
- Some contributions from paper (1), (2). \sim 15 min.
- Some contributions from (3), (5). \sim 10 min.
- Some contributions from (4) \sim 5 min.

Outline

•0000000000

- 1 Introduction: Robustness in high dimension

Two main problems

- 1) Observations can be corrupted:
 - Mistakes in copying, computing, experimenting, etc.
 - More than ever with internet data!
 - Adversarial attacks.

 $\hat{\mu}_1$ can be made arbitrarily far from μ by changing $\underline{\text{one}}$ observation.

→ Robustness to adversarial contamination

Two main problems

2) We study the size of the confidence region $r(\delta)$ as a function of the failure probability δ .

$$\mathbb{P}(|\hat{\mu}_1 - \mu| > r(\delta)) \le \delta$$

- How does $r(\delta)$ behave when $\delta \to 0$?
- When $X \sim \mathcal{N}(\mu, \sigma)$,

$$\mathbb{P}\left(|\hat{\mu}_1 - \mu| > \frac{\sigma\sqrt{2\ln(1/\delta)}}{\sqrt{N}}\right) \le \delta$$

Two main problems

When X is heavy-tailed:

• If we only assume finite second-moment, Chebyshev inequality for the empirical mean gives :

$$\mathbb{P}\left(|\hat{\mu}_1 - \mu| > \frac{\sigma}{\sqrt{N\delta}}\right) \le \delta$$

We would like to find estimators so that

$$r(\delta) \propto \frac{\sigma \sqrt{\ln(1/\delta)}}{\sqrt{N}}$$

 \rightarrow Robustness to heavy-tails

Subgaussian rate

We would like to have instead

$$r(\delta) \propto rac{\sigma \sqrt{\ln(1/\delta)}}{\sqrt{N}}$$

- Called subgaussian rate.
- Best possible rate in one dimension, achieved by [Catoni 2012].

Goal: We want our estimators to be as good as if the data were Gaussian, even when the real sample is <u>heavy tailed</u> and an ϵ fraction of it is <u>corrupted</u>. • Setting

Litterature review

Robustness to outliers:

- 1960, 1964 [Tuckey, Huber] \rightarrow First contamination models.
- 1984 [Huber, Hampel] \rightarrow General theory of robustness to outliers, in one dimension.

Robustness to heavy-tail:

• Formalised in [Catoni, 2012]

Robustness to both at the same time:

• Contribution of [Depersin, Lecué 2019]

What confidence region in high dimension?

- Once again, benchmark = i.i.d Gaussians.
- Borell-TIS : w.p. $\geq 1 \delta$

$$||\bar{X} - \mu|| \le C \left(\sqrt{\frac{\mathsf{Tr}\,\Sigma}{\mathsf{N}}} + \sqrt{\frac{||\Sigma||_{op}\log(1/\delta)}{\mathsf{N}}} \right)$$

- Decoupling between the deviation term ($\sqrt{\frac{\sigma \log(1/\delta)}{N}}$) and the complexity term ($\sqrt{\frac{\sigma d}{N}}$).
- Can we get this rate (plus a cost for adversarial contamination $\sigma \epsilon^{1/2}$) with heavy tailed and corrupted data, non asymptotically ? Setting

 Can we get the gaussian rate with heavy tailed and corrupted

Theorem (Lugosi-Mendelson 2017)

With probability $\geq 1 - e^{-C_1 K}$, for all vector $v \in \mathcal{B}_2(\mathbb{R}^d)$, there are at least 9K/10 blocks k such that

$$|\langle v, \bar{X}_k - \mu \rangle| \leq C_2 r_K := C_2 \left(\sqrt{\frac{\mathsf{Tr}\,\Sigma}{N}} + \sqrt{\frac{||\Sigma||_{op}K}{N}} \right)$$

where
$$\bar{X}_k = \frac{1}{Card(B_k)} \sum_{i \in B_k} X_i$$

 \rightarrow Starting point of my thesis!

W.p. $\geq 1 - e^{-C_1 K}$, $\forall v \in \mathcal{B}_2(\mathsf{R}^d)$, there are at least 9K/10 blocks k such that

$$|\langle v, \bar{X}_k - \mu \rangle| \le C_2 r_K := C_2 \left(\sqrt{\frac{\mathsf{Tr}\,\Sigma}{N}} + \sqrt{\frac{||\Sigma||_{op}K}{N}} \right)$$

Taking $K = C_3 \lfloor |\mathcal{O}| \vee \log(1/\delta) \rfloor$, we get, w.p. $\geq 1 - \delta$

$$|\langle v, \bar{X}_k - \mu \rangle| \le C_4 \left(\sqrt{\frac{\mathsf{Tr}\,\Sigma}{N}} + \sqrt{\frac{||\Sigma||_{op}\log(1/\delta)}{N}} + \sqrt{||\Sigma||_{op}\epsilon} \right)$$

→ Optimal sub-gaussian rate with optimal price for contamination!

Key insight:

- With probability $> 1 e^{-CK}$, this holds **uniformly** for all vector $v \in \mathcal{B}_2(\mathbb{R}^d)$.
- There is a huge gap between $\sup_{v} \operatorname{Med} \langle v, \bar{X}_k \mu \rangle (\sim r_K)$ and $\operatorname{Med} \sup_{v} \langle v, \bar{X}_k \mu \rangle (\sim \sqrt{\frac{\operatorname{Tr}(\Sigma)K}{N}})$.
- For most \bar{X}_k , there is a v so that $\langle v, \bar{X}_k \mu \rangle$ is large, but for a given v, a large fraction (9/10) of the \bar{X}_k checks $\langle v, \bar{X}_k \mu \rangle \leq r_K$.

This leads to a theoretical estimator :

$$\hat{\mu} \in \bigcap_{v \in \mathcal{B}_2(\mathbf{R}^d)} \mathbb{I}_{80}(X_1, ..., X_n, v)$$

with

$$\mathbb{I}_{80}(X_1,...,X_n,v) = \{x \in \mathbb{R}^d \mid \langle x,v \rangle \in [A(\mathbb{X},v),B(\mathbb{X},v)]\},\$$

$$A(\mathbb{X},v) = \mathcal{Q}_{10}(\langle X_i,v \rangle), \text{ and } B(\mathbb{X},v) = \mathcal{Q}_{90}(\langle X_i,v \rangle).$$

Computationally intractable.

Outline

- 2 Fast mean estimation

Two other ways to get good high dimensional estimators.

The same idea formulated differently:

First formulation :

$$\hat{\mu} = \underset{\mathbf{a} \in \mathbf{R}^d}{\operatorname{argmin}} \max_{\mathbf{v} \in \mathcal{B}_2(\mathbf{R}^d)} \sum_k \mathbf{1}_{\langle \mathbf{v}, \bar{X}_k - \mathbf{a} \rangle > 2r_k}.$$

• Second formulation (Depersin-Lecué) :

$$\hat{\mu} = \underset{a \in \mathbf{R}^d}{\operatorname{argmin}} \max_{v \in \mathcal{B}_2(\mathbf{R}^d)} \mathbf{Med}(\langle v, \bar{X}_k - a \rangle).$$

Idea : Start from a point a, solve $v^* = \operatorname{argmax}_{v \in \mathcal{B}_2(\mathbf{R}^d)} \sum_k 1_{\langle v, \bar{X}_k - a \rangle > 2r_k}$ and descend along v^* .

Cherapanamieri, Flammarion, Bartlett (2018)

Iterative descent method: try to find $v^* = \operatorname{argmax}_{v \in \mathcal{B}_2(\mathbf{R}^d)} 1_{\langle v, \bar{X}_{\iota} - x_{\iota} \rangle > 2r_{\iota}}$ at each step t and "descend".

$$\max \sum b_{i} \qquad \max \sum Z_{1,i}$$

$$b_{i}^{2} = b_{i} \qquad Z_{1,1} = 1$$

$$||v||^{2} = 1 \qquad Z_{i,i} = Z_{1,i}$$

$$\forall i, \ b_{i} \langle u, \bar{X}_{i} - x_{c} \rangle \geq 2b_{i}r_{K} \qquad \sum Z_{j,j} = 1$$

$$\forall i, \ b_{k} \langle ((Z_{i,j})_{j}, \bar{X}_{i} - x_{c}) \geq 2Z_{i,i}r_{k}$$

$$\rightarrow Z = (1, b, v)^{T}(1, b, v) \qquad Z \succeq 0$$

$$Z \in \mathbf{R}^{(1+k+d) \times (1+k+d)} \qquad (rank(Z) = 1)$$

Cherapanamjeri, Flammarion, Bartlett (2018)

Iterative descent method : try to find $v^* = \operatorname{argmax}_{v \in \mathcal{B}_2(\mathbf{R}^d)} 1_{\langle v, \bar{X}_{\iota} - x_t \rangle > 2r_{\iota}}$ at each step t and "descend".

- This relaxation gives a good approximation of v^* .
- This relaxation is tractable (but somehow costly)

$$\mathcal{O}(K^{3.5} + K^2 d)$$

• Can we get something faster using a different heuristic?

Second formulation (Depersin-Lecué) :

$$\hat{\mu} = \underset{a \in \mathbb{R}^d}{\operatorname{argmin}} \max_{v \in \mathcal{B}_2(\mathbb{R}^d)} \operatorname{Med}(\langle v, \bar{X}_k - a \rangle).$$

- \odot Good rate: supremum over ν outside the Median.
- Not tractable (Median operator).
- \bigcirc **No need** to know r_{ν} .
- (iii) Maybe possible to relax.

How to relax a hard combinatorial problem?

Contribution: replace the median by a minimum over weights:

$$\Delta_{\mathcal{K}} = \{(\omega_k) : k = 1, ..., \mathcal{K} | \sum \omega_k = 1 , 0 \leq \omega_k \leq 2/\mathcal{K} \}$$

$$\max_{v \in \mathcal{B}_2(\mathbf{R}^d)} \mathsf{Med}(\langle v, \bar{X}_k - a \rangle^2) \to \max_{v \in \mathcal{B}_2(\mathbf{R}^d)} \min_{\omega \in \Delta_{\mathcal{K}}} (\sum_{k} \omega_k \langle v, \bar{X}_k - a \rangle^2)$$

 \rightarrow We know that it is possible to compute efficiently :

$$\underset{M\succeq 0, \mathsf{Tr}(M)=1}{\operatorname{argmax}} \ \underset{w\in \Delta_K}{\min} \ \langle M, \sum_{k=1}^K \omega_k (\bar{X}_k - x_c) (\bar{X}_k - x_c)^\top \rangle$$

$$\begin{split} \Delta_{\mathcal{K}} &= \{ \left(\omega_{k}\right) : k = 1, ..., \mathcal{K} | \sum \omega_{k} = 1 \;,\; 0 \leq \omega_{k} \leq 2/\mathcal{K} \} \\ &\max_{v \in \mathcal{B}_{2}(\mathbf{R}^{d})} \min_{\omega \in \Delta_{\mathcal{K}}} (\sum_{k} \omega_{k} \left\langle v, \bar{X}_{k} - \mathbf{a} \right\rangle^{2}) \end{split}$$

What link with:

$$\underset{M\succeq 0, \mathsf{Tr}(M)=1}{\operatorname{argmax}} \ \underset{w\in \Delta_K}{\min} \ \langle M, \sum_{k=1}^K \omega_k (\bar{X}_k - x_c) (\bar{X}_k - x_c)^\top \rangle$$

 \rightarrow Can we recover v^* from M^* ? Is M^* aprox. of rank one? How to use the theorem from [Lugosi-Mendelson]?

How to relax a hard combinatorial problem?

$$\max_{v \in \mathcal{B}_2(\mathbf{R}^d)} \mathbf{Med}(\langle v, \bar{X}_k - a \rangle^2) \quad \text{(Our "second formulation")}$$

$$\updownarrow$$

$$\max_{v \in \mathcal{B}_2(\mathbf{R}^d)} \min_{\omega \in \Delta_K} (\sum_k \omega_k \langle v, \bar{X}_k - a \rangle^2)$$

$$\updownarrow$$

$$\arg\max_{M \succeq 0, \mathbf{Tr}(M) = 1} \min_{w \in \Delta_K} \langle M, \sum_{k=1}^K \omega_k (\bar{X}_k - x_c) (\bar{X}_k - x_c)^\top \rangle$$

Extension of Lugosi-Mendelson 17

Our main technical contribution:

Theorem (Depersin-Lecué 2020)

If $K \geq c_1 |\mathcal{O}|$, then, with probability $\geq 1 - \exp(-c_2 K)$, for all symmetric matrices $M \succeq 0$ such that Tr(M) = 1, there are at least 9K/10 of the blocks for which $||M^{1/2}(\bar{X}_k - \mu)||_2 \le c_3 r_K$

• With $M = vv^T$, we have [Lugosi-Mendelson].

Extension of the first Theorem

- With $M = vv^T$, we have [Lugosi-Mendelson].
- The proof follows principles from Goemans and Williamson :
 - Suppose that $||M^{1/2}(\bar{X}_k \mu)||_2 \ge c_3 r_K$ for K/10 blocks at least, and draw $G \sim \mathcal{N}(0, M)$
 - Then we can prove probabilistically that there exists G such that for K/20 blocks $|\langle G, \bar{X}_k \mu \rangle| \ge C_2 r_K$
 - We use [Lugosi-Mendelson] to bound that probability.

Some comments

- No need to know r_{κ} !
- ullet Computational time $\mathcal{O}(K^2d) o ext{best possible ? (open question)}$
- Adaptive choice of $K \sim \log(1/\delta)$ via Lepski's method, whenever r_K can be computed (we decrease K as long as $||\hat{\mu}^{(K)} \hat{\mu}^{(K')}||_2 \leq 2r_{(K')}$ for all K' > K).

Regression

Contribution: concrete implementation of such methods.

•00000000

Outline

- 3 Mean estimation in any norm

Other norms

Theorem (Lugosi Mendelson 2017)

With probability $\geq 1 - e^{-C_1 K}$, for all vector $v \in \mathcal{B}_2(\mathbb{R}^d)$, there are at least 9K/10 blocks k such that

$$|\langle v, \bar{X}_k - \mu \rangle| \leq C_2 r_K := C_2 \left(\sqrt{\frac{\mathsf{Tr}\,\Sigma}{N}} + \sqrt{\frac{||\Sigma||_{op}K}{N}} \right)$$

• For all vector $v \in \mathcal{B}_2(\mathsf{R}^d)$: what if $\mathcal{B}_2(\mathsf{R}^d)$ is replaced by other set C?

In more recent work (Lugosi-Mendelson [2019], Depersin-Lecué [2020]) there is an answer :

Theorem (Rademacher complexity)

With probability $> 1 - e^{-C_1 K}$, for any set C

$$\sup_{v \in \mathcal{C}} \mathsf{Med}(\langle v, \bar{X}_k - \mu \rangle) \leq C_1 \sqrt{\frac{\mathcal{R}_{\Sigma}(\mathcal{C})}{\mathcal{N}}} \vee \sqrt{\frac{\mathsf{diam}_{\Sigma}(\mathcal{C})\mathcal{K}}{\mathcal{N}}}$$

where
$$\mathcal{R}_{\Sigma}(C) = \mathbb{E}(\sup_{v \in C} \langle v, \sum_{i}^{N} \epsilon_{i}(X_{i} - \mu) \rangle)^{2}/N$$
 and $\dim_{\Sigma}(C) = \sup_{v \in C} \mathbb{E}(\langle v, Y - \mu \rangle^{2})$

In the case $C = \mathcal{B}_2(\mathbf{R}^d)$, $\mathcal{R}_{\Sigma}(C) = \text{Tr}(\Sigma)$ and $\text{diam}_{\Sigma}(C) = ||\Sigma||_{op}$

000000000

$$\sup_{v \in \mathcal{C}} \mathsf{Med}(\langle v, \bar{X}_k - \mu \rangle) \leq C_1 \sqrt{\frac{\mathcal{R}_{\Sigma}(\mathcal{C})}{\mathcal{N}}} \vee \sqrt{\frac{\mathsf{diam}_{\Sigma}(\mathcal{C})\mathcal{K}}{\mathcal{N}}}$$

- Not always sharp \rightarrow problems with heavy-tailed distribution.
- \times Take $X_1^j = \sqrt{Nd}\mathcal{B}(1/Nd)$ and $C = \{e_1, e_2, ..., e_n\}$
- \times RHS $\sim \sqrt{d/N}$ whereas LHS $\sim \sqrt{1/N}$.

Theorem (VC Dimension)

For any set C, with probability $\geq 1 - e^{-C_1 K}$

$$\sup_{v \in \mathcal{C}} \mathsf{Med}(\langle v, \bar{X}_k - \mu \rangle) \lesssim \sqrt{\frac{\mathsf{diam}_{\Sigma}(\mathcal{C}) \, \mathsf{VC}(\mathcal{C})}{\mathcal{N}}} \vee \sqrt{\frac{\mathsf{diam}_{\Sigma}(\mathcal{C}) \mathcal{K}}{\mathcal{N}}}$$

where **VC** is the VC-dimension of the set *C*.

In the case
$$C = \mathcal{B}_2(\mathsf{R}^d)$$
, $\operatorname{diam}_{\Sigma}(C) \operatorname{VC}(C) = ||\Sigma||_{op} d \geq \operatorname{Tr}(\Sigma)$

For sparse structure :
$$S_s = \{x \in R_d \mid \sum \mathbb{1}_{x_i \neq 0} \leq s\}$$
, $C = \mathcal{B}_2(R^d) \cap S_s$

- $\times \mathcal{R}_{\Sigma}(C)$ can be as large as $\sim \text{Tr}(\Sigma)$
 - \rightarrow Can be smaller with additional assumptions (log(d) moments on X_1).
 - \rightarrow Without them : $\mathcal{R}_{\Sigma}(C)$ does not depend on s!
- $\checkmark \operatorname{diam}_{\Sigma}(C)VC(C) \sim ||\Sigma||_{op} s \log(d)$
 - \rightarrow With only two moments!

The same goes for $C = \{M \in \mathcal{B}_F(\mathcal{M}_n) | \operatorname{rg}(M) < k\}$.

→ Application to sparse mean estimation and low-rank estimation under L_2 assumptions.

What can we hope at best when estimating the mean w.r.t. any norm?

Theorem (Lugosi-Mendelson 2019)

If for all $\mu^* \in \mathbb{R}^d$ and all δ , $\hat{\mu} : \mathbb{R}^{Nd} \to \mathbb{R}^d$ satisfies $\mathbb{P}_{\mu^*}^N[||\hat{\mu} - \mu^*||_C \leq r^*] \geq 1 - \delta$ then,

$$r^* \geq rac{c}{\sqrt{N}} \left(\sup_{\eta > 0} \eta \sqrt{\log N(\Sigma^{1/2}C, \eta B_2^d)}
ight. + \sup_{v \in C} ||\Sigma^{1/2}v||_2 \sqrt{\log(1/\delta)}
ight)$$

 $N(\Sigma^{1/2}C, \eta B_2^d) = \text{minimal number of translated of } \eta B_2^d$ needed to cover $\Sigma^{1/2}C$.

Contribution: better lower bound.

Theorem (Depersin-Lecué 2020)

If for all $\mu^* \in \mathbb{R}^d$ and all δ , $\hat{\mu} : \mathbb{R}^{Nd} \to \mathbb{R}^d$ satisfies $\mathbb{P}^N_{u^*}[||\hat{\mu} - \mu^*||_C \le r^*] \ge 1 - \delta$ then,

$$r^* \geq C \max \left(\frac{\ell^*(\Sigma^{1/2}C)}{\sqrt{N}}, \sup_{v \in C} ||\Sigma^{1/2}v||_2 \sqrt{\frac{\log(1/\delta)}{N}} \right).$$

$$\ell^*(\Sigma^{1/2}C)=\sup\left(\left.\left\langle G,x\right
ight
angle:x\in\Sigma^{1/2}C
ight)=\mathbb{E}\left.\left|\left|\Sigma^{1/2}G\right|\right|_{\mathcal{C}}, ext{ for }G\sim\mathcal{N}(0,I_d)$$

	$S = \mathcal{B}_2, \Sigma = Id$	$S = \mathcal{B}_2, \Sigma \neq Id$	$\mathcal{S} = \mathcal{S}_{s}, \Sigma = Id$
Entropy	d	$Tr(\Sigma)/\log(d)$	$s\log(d/s)$
Gaussian MW	d	$Tr(\Sigma)$	$s\log(d/s)$
Rademacher	d	$Tr(\Sigma)$	d
VC-dimension	d	d	$s\log(d/s)$

Outline

- 4 Stahel-Donoho Estimation

What norm to use?

Question: What norm $\|\cdot\|_S$ should we use to estimate μ ? Benchmark: If $G_1,\ldots,G_N\sim\mathcal{N}(\mu,\Sigma)$ the confidence region with the lowest volume are the ellipsoids $\bar{G}_N+r^*\Sigma^{1/2}B_2^d$. Moreover,

$$\mu \in \bar{G}_N + r^* \Sigma^{1/2} B_2^d \Leftrightarrow \left\| \Sigma^{-1/2} (\bar{G}_N - \mu) \right\|_2 \leq r^*$$

so the norm leading to the smallest confidence intervals is

$$\left\| \Sigma^{-1/2} \cdot \right\|_2 : u \in \mathbf{R}^d \to \left\| \Sigma^{-1/2} u \right\|_2 = \sup \left(\langle u, v \rangle : v \in \Sigma^{-1/2} B_2^d \right)$$

that is $\|\cdot\|_C$ for $C = \Sigma^{-1/2} B_2^d$.

Problem: Σ is not known.

The subgaussian minimax rate for $\|\Sigma^{-1/2}\|_{2}$ is

$$\sqrt{\frac{\ell^*(\Sigma^{1/2}S)}{N}} + \sup_{v \in C} \left\| \Sigma^{1/2}v \right\|_2 \sqrt{\frac{\log(1/\delta)}{N}} = \sqrt{\frac{d}{N}} + \sqrt{\frac{\log(1/\delta)}{N}}$$

for
$$C = \Sigma^{-1/2} B_2^d$$
.

It is reached by some known estimators for $C = \Sigma^{-1/2} B_2^d$.

but these estimators use Σ in their construction.

Stahel-Donoho Depth

Def. [Stahel 81][Donoho 82]

The Stahel-Donoho Outlyingness of a point $x \in \mathbb{R}^d$ regarding $(z_k)_k \in \mathbb{R}^d$ is

$$SDO(x) = \sup_{\|v\|_2 = 1} \frac{|\langle x, v \rangle - \mathsf{Med}(\langle z_k, v \rangle)|}{\mathsf{Med}(|\langle z_k, v \rangle - \mathsf{Med}(\langle z_k, v \rangle)|)}$$

The SDO median is $\hat{\mu}^{SDO} \in \operatorname{argmin} (SDO(x) : x \in \mathbb{R}^d)$

Stahel-Donoho Depth

$$\hat{\mu}^{SDO} \in \operatorname{argmin}\left(SDO(x) : x \in \mathbb{R}^d\right)$$

- affine-equivariant.
- best breakdown point among affine-equivariant estimators [Tyler, 94].
- \sqrt{n} -consistent [Maronna, Yohai, 95] and asymptotically normal [Zuo, Cui, He, 04] \rightarrow no non-assymptotic results!
- Open problem to compute the SDO of a point.

Idea: To have non-asymptotic results, we use block-means

$$\bar{X}_1 = \frac{1}{|B_1|} \sum_{i \in B_1} X_i, \cdots, \bar{X}_K = \frac{1}{|B_K|} \sum_{i \in B_K} X_i$$

in the SDO function

$$SDO_K(x) = \sup_{\|v\|_2 = 1} \frac{|\langle x, v \rangle - \mathsf{Med}(\langle \bar{X}_k, v \rangle)|}{\mathsf{Med}(|\langle \bar{X}_k, v \rangle - \mathsf{Med}(\langle \bar{X}_k, v \rangle)|)},$$

We consider the associated estimator

$$\hat{\mu}_K^{SDO} \in \operatorname{argmin}_{\mu \in \mathbf{R}^d} SDO_K(x)$$

00000000

Main contribution:

Theorem (Depersin-Lecué 2021)

Under some technical conditions, taking $\mathcal{O} \lor d \lesssim K$, with probability at least $1 - \exp(-c_1 K)$

$$\left\| \Sigma^{-1/2} (\hat{\mu}_{MOM,K}^{SDO} - \mu) \right\|_2 \le c_2 \sqrt{\frac{K}{N}}.$$

As $K \geq |\mathcal{O}| \vee d$ and $\log(1/\delta) \sim K$, we have the subgaussian rate :

$$\sqrt{\frac{K}{N}} \sim \sqrt{\frac{d}{N}} + \sqrt{\frac{\log(1/\delta)}{N}} + \sqrt{\frac{|\mathcal{O}|}{N}}.$$

We can achieve a better cost regarding contamination $\frac{|\mathcal{O}|}{N}$ with additional hypothesis on how the CDF in each direction behaves

Thank you!

Our setting

- $(\tilde{X}_1,...,\tilde{X}_N)$, N independent and identically distributed observations $\in \mathbb{R}$.
 - $\mathbb{E}(\tilde{X}_1) = \mu \to \mathsf{to}$ estimate
 - $\mathbb{E}((\tilde{X}_1 \mu)(\tilde{X}_1 \mu)^T) = \sigma^2$ unknown.
- Adversarial contamination: there is (random) set \mathcal{O} such that, for $i \in \mathcal{O}^c, X_i = \tilde{X}_i$
 - The set \mathcal{O} is not independent of $\{\tilde{X}_i : i = 1, ..., N\}$
 - $\{X_i : i \in \mathcal{O}\}$ may have arbitrary dependance structure.
 - $|\mathcal{O}| \leq \lfloor \varepsilon N \rfloor \rightarrow \text{fixed proportion}$
- We observe $\{X_i : i = 1, ..., N\}$ back

Our setting

- $(\tilde{X}_1,...,\tilde{X}_N)$, N independent and identically distributed observations $\in \mathbb{R}^d$.
 - $\mathbb{E}(\tilde{X}_1) = \mu \rightarrow \text{to estimate}$
 - $\mathbb{E}((\tilde{X}_1 \mu)(\tilde{X}_1 \mu)^T) = \Sigma$ unknown.
- Adversarial contamination: there is (random) set \mathcal{O} such that, for $i \in \mathcal{O}^c, X_i = \tilde{X}_i$
 - The set \mathcal{O} is not independent of $\{\tilde{X}_i : i = 1, ..., N\}$
 - $\{X_i : i \in \mathcal{O}\}$ may have arbitrary dependance structure.
 - $|\mathcal{O}| \leq \lfloor \varepsilon N \rfloor \rightarrow \text{fixed proportion}$
- We observe $\{X_i : i = 1, ..., N\}$ back

Median of Mean Paradigm

- K equal-size blocks $B_1, \ldots, B_K \subset \{1, ..., N\}$
- We compute $\bar{X}_k = \frac{1}{|B_k|} \sum_{i \in B_k} X_i$ where $|B_k| = N/K$
- Our estimator is $\hat{\mu}_K = \text{Med}\{\bar{X}_k : k = 1, ..., K\}$.

$$\underbrace{\frac{1.8 \quad 1.65}{1.72} \quad \underbrace{\frac{1.50 \quad 170}{85.7} \quad \underbrace{\frac{1.78 \quad 1.68}{1.73}}}_{1.73} \rightarrow \quad \hat{\mu}_3 = 1.73$$

• $\hat{\mu}_3 = 1.73$ while $\hat{\mu}_1 = 29.6$.

• Choosing $K = C_1 ||\mathcal{O}| \vee \log(1/\delta)|$, we get

Theorem (Devroye and al-2016)

With probability $\geq 1 - \delta$,

$$|\hat{\mu}_{\mathcal{K}} - \mu| \lesssim \sigma \sqrt{\frac{\log(1/\delta)}{N}} \vee \sqrt{\frac{|\mathcal{O}|}{N}}$$

- $\sigma\sqrt{\frac{\log(1/\delta)}{N}}$ \to robustness to heavy-tails, optimal [Catoni, 2012].
- $\sigma\sqrt{\epsilon} \rightarrow$ robustness to outliers, optimal [Diakonikolas, 2016].

Key Insights of the proof

What does the median bring?

- For robustness to heavy-tail, we want strong (exponential)
 probability bounds → Hoeffding's inequality → bounded variables.
 - Median in $[\mu r, \mu + r] \Leftarrow Z := \sum_{k=1}^K 1_{\bar{X}_k \in [\mu r, \mu + r]} > 1/2K$ \rightarrow we study the **deviation** of Z, a sum of **bounded variables**.
 - ullet Hoeffding's failure probability $\sim e^{-K}
 ightarrow$ we take $K \gtrsim \log(1/\delta)$
- If $K>4|\mathcal{O}|$, no more than 1/4 of block is corrupted. If some property is true for a fraction α of the "initial" blocks, it will still be true for a fraction $> \alpha 1/4$ after corruption.

Litterature review

MOM principle appeared in:

- ullet 1983 [Nemirovsky and Yudin] o Stochastic optimization
- 1986 [Jerrum, Valiant and Vazirani] → Computer science
- \bullet 2002 [Alon, Matias and Szegedy] \to Space complexity of an algorithm

Application of the MOM principle in

- Multi-armed bandit problem: [Bubeck, Cesa-Bianchi, Lugosi, 2013]
- Robustness to heavy-tail: [Hsu, Sabato, 2013], [Devroye, Lerasle, Lugosi, Oliveira, 2016]
- Regression: [Hsu, Sabato, 2013], [Minsker, 2015],
- Learning theory: [Brownless, Joly, Lugosi, 2015], etc.

By what should we replace the Median?

→ Coordinate-wise median of means

$$r_{\delta} = \sqrt{d}\sigma \frac{\sqrt{\ln(d/\delta) + \mathcal{O}}}{\sqrt{N}} \quad (\rightarrow \sqrt{\frac{\mathsf{Tr}(\Sigma)\ln(d/\delta)}{N}} + \sqrt{\mathsf{Tr}(\Sigma)\epsilon})$$

 \rightarrow Wrong rate !

By what should we replace the Median ?

→ "Geometric median" of means or Fermat Point

$$\hat{\mu} = \mathrm{argmin}_{a} \sum_{k} |\bar{X}_{k} - a|$$

$$r_{\delta} = \sqrt{d}\sigma \frac{\sqrt{\ln(1/\delta) + \mathcal{O}}}{\sqrt{N}} \quad (\rightarrow \sqrt{\frac{\mathsf{Tr}(\Sigma)\ln(1/\delta)}{N}} + \sqrt{\mathsf{Tr}(\Sigma)\epsilon})$$

 \rightarrow Wrong rate!

Def. For all $v \in S_2^{d-1}$, $W_v : p \in (0,1) \to H_v^{(-1)}(p)$

$$H_{v}(r) = \mathbb{P}\left[\frac{1}{\sqrt{N/K}}\sum_{i=1}^{N/K}\langle \Sigma^{-1/2}(\tilde{X}_{i}-\mu), v \rangle \geq r\right].$$

Hypothesis: $\exists 0 < \epsilon < 1/4, \varphi_I(\epsilon) < \varphi_{II}(\epsilon)$ so that $\forall v \in \mathcal{S}_2^{d-1}$,

$$\max\left(W_{v}\left(\frac{1}{4}-\epsilon\right)-W_{v}\left(\frac{1}{2}+\epsilon\right),W_{v}\left(\frac{1}{2}-\epsilon\right)-W_{v}\left(\frac{3}{4}+\epsilon\right)\right)\leq \varphi_{u}(\epsilon)$$

and

$$\min\left(W_{\nu}\left(\frac{1}{4}+\epsilon\right)-W_{\nu}\left(\frac{1}{2}-\epsilon\right),W_{\nu}\left(\frac{1}{2}+\epsilon\right)-W_{\nu}\left(\frac{3}{4}-\epsilon\right)\right)\geq\varphi_{l}(\epsilon).$$

