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Robust and Tractable Estimation in High Dimensions
@ Robust subgaussian estimation of a mean vector in nearly linear
time (to appear in Annals of Stat), with G.L.

@® A spectral algorithm for robust regression with subgaussian rates
(submitted)

© Robust subgaussian estimation with VC-dimension. (submitted)

@ On the robustness to adversarial corruption and to heavy-tailed data
of the Stahel-Donoho median of means, with G.L. (submitted)

©® Optimal robust mean and location estimation via convex programs
with respect to any pseudo-norms, with G.L. (submitted)
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Today ?

General introduction ~ 10 min.
® Some contributions from paper (1), (2). ~ 15 min.
® Some contributions from (3), (5). ~ 10 min.

® Some contributions from (4) ~ 5 min.
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@ Introduction : Robustness in high dimension
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Introduction : Robustness in high dimension
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Two main problems

1) Observations can be corrupted :

® Mistakes in copying, computing, experimenting, etc.
® More than ever with internet data !

e Adversarial attacks.

f11 can be made arbitrarily far from p by changing one observation.

— Robustness to adversarial contamination
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Introduction : Robustness in high dimension
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Two main problems
2) We study the size of the confidence region r(d) as a function
of the failure probability ¢.
P(lfx —pl > r(d)) <96

® How does r(¢) behave when § — 0 7

® When X ~ N (u,0),

P(mrwA>a‘%%U®>§5
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Introduction : Robustness in high dimension
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Two main problems

When X is heavy-tailed :

® |f we only assume finite second-moment, Chebyshev inequality
for the empirical mean gives :

o
Pl —ul>—) <6
(Im 1| m)_

We would like to find estimators so that

(6) g+/In(1/9)
VN

— Robustness to heavy-tails
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Introduction : Robustness in high dimension
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Subgaussian rate

We would like to have instead

r(d) o

e (alled subgaussian rate.
® Best possible rate in one dimension, achieved by [Catoni 2012].
Goal : We want our estimators to be as good as if the data were

Gaussian, even when the real sample is heavy tailed and an ¢
fraction of it is corrupted.
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Introduction : Robustness in high dimension
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Litterature review

Robustness to outliers:
® 1960, 1964 - [Tuckey, Huber] — First contamination models.

® 1984 - [Huber, Hampel] — General theory of robustness
to outliers, in one dimension.

Robustness to heavy-tail :
® Formalised in [Catoni, 2012]

Robustness to both at the same time :
¢ Contribution of [Depersin, Lecué 2019]
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Introduction : Robustness in high dimension
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What confidence region in high dimension ?

® Once again, benchmark = i.i.d Gaussians.

® Borell-TIS : wp. >1—-96

X~ all < c<\/TNZ+\/|ZH'Ng(1/5))

® Decoupling between the deviation term ( %(1/5) ) and

the complexity term ( |/ %2).

® Can we get this rate (plus a cost for adversarial contamination
o¢*/?) with heavy tailed and corrupted data, non
asymptotically 7
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® Can we get the gaussian rate with heavy tailed and corrupted
data, non asymptotically 7

Theorem (Lugosi-Mendelson 2017)

With probability > 1 — e~ K for all vector v € Bg(Rd),
there are at least 9K/10 blocks k such that

% Trx Yy
(v, X — 1) | < Gork = G “V +\/H ook

Y 1
where Xk = W(Bk) ZiEBk X,'

— Starting point of my thesis !
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Introduction : Robustness in high dimension
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W.p. > 1—e GK Vv e By(RY), there are at least 9K/10 blocks
k such that

% TrX I K
HV,Xk—HHSCer::Cz(\/IrV +\/H ‘/|\l/)p )

Taking K = G3||O| V log(1/0)], we get, w.p. >1—0

(v, Xk — ) | < Gy <\/T,rvz + \/”Z”""'A‘;g(l/(S) + v’Hz op(>

— Optimal sub-gaussian rate with optimal price for
contamination!
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Introduction : Robustness in high dimension
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Key insight :

e With probability > 1 — e~ K, this holds uniformly for all
vector v € B(RY).

® There is a huge gap between sup, Med (v, X; — ) (~ ri) and

Med sup,, (v, Xk — ) (~ \/@)

® For most Xj, there is a v so that (v, X — w) is large, but for
a given v, a large fraction (9/10) of the Xy checks
<V>Xk _,u> < rk.
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® This leads to a theoretical estimator :

/,'\L € ﬂ ISO(X17"'7XI77V)
vEBz(Rd)

with
lgo(X1, ..., X, v) = {x € R?| (x, v) € [A(X, V), B(X, )]},
A(X, v) = Q10({Xi, v)), and B(X,v) = Qoo((Xi, V)).

e Computationally intractable.
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@ Fast mean estimation
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Fast mean estimation
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Two other ways to get good high dimensional estimators.

The same idea formulated differently :

® First formulation :

[l = argmin max 1(v,)_<k—a>>2rk-
acRY vEB2(RY) P

® Second formulation (Depersin-Lecué) :

[ = argmin  max Med((v, X — a)).
acR? veBy(RY)

Idea : Start from a point a, solve
v = argmax, g, (Rd) >k Loy Re—a)y>2n, and descend along v*.

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin
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Cherapanamjeri, Flammarion, Bartlett (2018)

Iterative descent method : try to find
v = argmax, g, (Rd) 1<V7)_<k*Xt>>2rk at each step t and "descend".

maxz b; maXZZLi

b? = b; Z1n=1
P =1 Zii =4
Vi, bi(u, Xi — xc) > 2birg Y Zj=1
Vi, bi(((Zij)j, Xi — xc) > 2Z; iri
—Z=(1,b,v)T(1,b,v) Z>0
7 € RUHktd)x(1+k+d) (rank(Z) = 1)
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Fast mean estimation
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Cherapanamjeri, Flammarion, Bartlett (2018)

Iterative descent method : try to find
v = argmax, g, (re) (v, X, —x,)>2r, at each step t and "descend".

® This relaxation gives a good approximation of v*.

® This relaxation is tractable (but somehow costly)

O(K3® 4 K2d)

e Can we get something faster using a different heuristic 7
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Fast mean estimation
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Second formulation (Depersin-Lecué) :

fi = argmin  max Med((v, Xy — a)).
acR? V€B2(Rd)

® Good rate : supremum over v outside the Median.
® Not tractable (Median operator).
® No need to know ry.

©) Maybe possible to relax.

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin



Fast mean estimation
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How to relax a hard combinatorial problem 7

Contribution : replace the median by a minimum over
weights :

AK:{(wk)ik:1,...,K|Zwk:1, ngk§2/K}

max Med((v,Xx —a)°) = max min wi (v, X — a
vEB,(RY) ({ g > ) vEB,y(RY) wEAK Z 3 , > )

— We know that it is possible to compute efficiently :

argmax  min (M, ) we( X — xo)(Xi — x T
M=0,Tr(M)=1 WEDK Z )( <))
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Fast mean estimation
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AK:{(wk)ZkZI,...,K‘ZwkZI, ngk§2/K}

max min Zw vX —a
i weAK( p K —a)’)

What link with :

K
argmax  min (M) wi(Xe — x)(Xie — xc) "
M=0,Tr(M)=1 WEDK Z )( <))

— Can we recover v* from M* 7 Is M* aprox. of rank one ? How
to use the theorem from [Lugosi-Mendelson] 7
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How to relax a hard combinatorial problem 7

max Med({v, Xk — a)z) (Our "second formulation")
vGBz(Rd)

0

max  min E Wk vXk—a> )
vEB,y(RY) wEAK

0

argmax min (M, wi(Xie — x)(Xee — x T
M>=0,Tr(M)=1 WEAK< Z ( 2 o))
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Extension of Lugosi-Mendelson 17

Our main technical contribution :

Theorem (Depersin-Lecué 2020)

If K> c1|O], then, with probability > 1 —exp(—cK), for all
symmetric matrices M = 0 such that Tr(M) = 1, there are at
least 9K /10 of the blocks for which ||MY/2( X, — p)||2 < c3rk

e With M = v, we have [Lugosi-Mendelson].
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Fast mean estimation
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Extension of the first Theorem

e With M = w, we have [Lugosi-Mendelson].

® The proof follows principles from Goemans and Williamson :

® Suppose that ||MY/2(X, — p)||2 > c3ri for K/10 blocks at
least, and draw G ~ A/(0, M)

® Then we can prove probabilistically that there exists G such
that for K/20 blocks | (G, Xk — ) | > Gork

® We use [Lugosi-Mendelson] to bound that probability.
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Some comments

® No need to know ri !
e Computational time O(sz) — best possible 7 (open question)
® Adaptive choice of K ~ log(1/d) via Lepski's method,

whenever rk can be computed (we decrease K as long as
AR — pKD||5 < 2rny for all K > K).
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Regression

Contribution : concrete implementation of such methods.

Method
[ Hsu
1 Ransac
[ Huber
[0 This paper
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© Mean estimation in any norm
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Other norms

Theorem (Lugosi Mendelson 2017)

With probability > 1 — e~ &% for all vector v € By(RY),
there are at least 9K/10 blocks k such that

X Tri Y ||op K

e For all vector v € Bo(RY) : what if Bo(RY) is replaced by
other set C ?
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In more recent work (Lugosi-Mendelson [2019], Depersin-Lecué
[2020]) there is an answer :

Theorem (Rademacher complexity)

With probability > 1 — e~ K| for any set C

o R):(C) diamz(C)K
ig(p:Med«v,Xk—u)) < Cl\/ N V\/ N

where Rs(C) = E(supycc (v, SV ei(Xi — 1)))?/N and
diams(C) = sup,ec E((v, Y — 1))

In the case C = Ba(R?), Rs(C) = Tr(L) and diams(C) = [|Z||op
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Mean estimation in any norm
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o R):(C) diamz(C)K
iggMed((v,Xk—u)) < Cl\/ N V\/ N

x Not always sharp — problems with heavy-tailed distribution.

X Take X{ =V NdB(1/Nd) and C = {e1, e, ..., €n}

X RHS ~ /d/N whereas LHS ~ /1/N.

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin



Introduction : Robustness in high dimension Fast mean estimation Mean estimation in any norm Stahel-Donoho Esti

[e]e]ele] Jele]e]e] e]e

Theorem (VC Dimension)

For any set C, with probability > 1 — e~ &K

_ diamy (C) VC(C)  [diams(C)K
322 Med((v, Xk — 1)) S\/ = N \/\/ >/:V

where VC is the VC-dimension of the set C.

In the case C = Bo(RY), diamy(C) VC(C) = ||Z||opd > Tr(X)
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Mean estimation in any norm
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For sparse structure : Ss = {x € Rgq|> 140 < s},
C = B(RY) N Ss

X Ry (C) can be as large as ~ Tr(X)
— Can be smaller with additional assumptions (log(d) moments
on Xl)
— Without them : Ry (C) does not depend on s !

v diamy(C)VC(C) ~ ||Z||ops log(d)
— With only two moments !

The same goes for C = {M € Bg(M,)| rg(M) < k}.

— Application to sparse mean estimation and low-rank
estimation under L, assumptions.
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What can we hope at best when estimating the mean w.r.t. any
norm ?

Theorem (Lugosi-Mendelson 2019)

If for all p* € R? and all 6, o : R¥ — R? satisfies
PRIl = p¥llc < r*] > 1— 6 then,

c
r* > —— [ supny/log N(X1/2C,nBg
— (sumnyfoe ?)

-+ sup HZl/szQ\/Iog(l/é)>
veC

N(XY2C,nB§) = minimal number of translated of 7BS
needed to cover ¥1/2C.
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Contribution : better lower bound.

Theorem (Depersin-Lecué 2020)

If for all p* € R? and all 6, 4 : R¥ — R satisfies
PNl — u¥llc < r*] =16 then,

*(X1/2C)
VN

0*(Z12C) = sup ((G,x) : x € TY/2C) = E||XY2G||c, for
G ~N(0, Iy)

log(1/9
,SUpHZl/2V||2 g( / )
veC

*
r* > C max
- N
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S=ByX=Id | S=B,X#Id | S=S;,x=1Id
Entropy d Tr(X)/ log(d) slog(d/s)
Gaussian MW d Tr(X) slog(d/s)
Rademacher d Tr(X) d
VC-dimension d d slog(d/s)
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What norm to use ?

Question: What norm ||-||s should we use to estimate /1 ?
Benchmark: If Gi,..., Gy ~ N (i, X) the confidence region with
the lowest volume are the ellipsoids Gy + r*¥/2BY.

Moreover,

pe Gyt rei?ed o Hz—1/2(GN . #)H2 <7

so the norm leading to the smallest confidence intervals is

HZ—W-H2 ‘ueRY - HZ_1/2UH = sup ((u, v): v e Z_l/ng)

2

that is ||-|| - for C = X ~1/2B¢.

Problem: X is not known.
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What minimax rate 7

The subgaussian minimax rate for || Z~1/2.||, is

1/2 / [d /
veC

for C =X "1/2B§.
It is reached by some known estimators for C = ¥ ~1/2Bg.

. but these estimators use X in their construction.
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Stahel-Donoho Depth

Def. [Stahel 81][Donoho 82]

The Stahel-Donoho Outlyingness of a point x € RY regarding
(Zk)k E Rd is

x) = su | {x, v) — Med((z, v))|
SDO(x) Hszil Med(| (z, v) — Med((z, v))|)

The SDO median is i°P° € argmin (SDO(x) : x € RY)
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Stahel-Donoho Depth

1°P9 € argmin (SDO(x) : x € RY)

affine-equivariant.

best breakdown point among affine-equivariant estimators
[Tyler, 94].

\/n-consistent [Maronna, Yohai, 95] and asymptotically normal
[Zuo, Cui, He, 04] — no non-assymptotic results !

Open problem to compute the SDO of a point.
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Idea: To have non-asymptotic results, we use block-means
K= g 2 X K= g YO X
1= 57 iy s XK = 15 i
Bil 2 ' |Bk| :

in the SDO function

e | <X’Y> - Med(()_(k,l/>)|
SPOKC) = P | V(] (Ko, v) — Med((Xe, v))])

We consider the associated estimator

[P0 e argmin , cgs SDOk (x)
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Main contribution :
Theorem (Depersin-Lecué 2021)

Under some technical conditions, taking O V d < K, with
probability at least 1 — exp(—c1K)

_ N K
Hz 1/2 M"/%/IDOOMK N)H2 < @)\ N

As K 2 |O] V d and log(1/6) ~ K, we have the subgaussian rate :
/ / [log( 1/5

We can achieve a better cost regarding contamination L(/\Q/‘ with
additional hypothesis on how the CDF in each direction behaves
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Thank you |
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Our setting

. ()N(l, ...,)?N), N independent and identically distributed
observations € R.
® E(X;) = pu — to estimate

® E((Xy —p)(Xqs — p)T) = 02 unknown.

® Adversarial contamination: there is (random) set O such that,
forie OC,X,' =X
® The set O is not independant of {X;:i=1,..., N}
® {X;:ie€ O} may have arbitrary dependance structure.
® |O| < |eN| — fixed proportion

® We observe {X;:i=1,...,N}
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Our setting

. ()N(l, ...,)?N), N independent and identically distributed
observations € RY.
® E(X;) = pu — to estimate

® E(Xy — pu)(X1 — 1)) = T unknown.

® Adversarial contamination: there is (random) set O such that,
forie OC,X,' =X
® The set O is not independant of {X;:i=1,..., N}
® {X;:ie€ O} may have arbitrary dependance structure.
® |O| < |eN| — fixed proportion

® We observe {X;:i=1,...,N}
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Median of Mean Paradigm

K equal-size blocks By, ..., Bk C {1,..., N}

e We compute X = = S .. X; where |By| = N/K
[Bi| £~i€Bk

® Our estimator is fix = Med{X, : k =1,...,K}.

1.8 165 150 170 1.78 1.68 — [i3=1.73
W vV v
1.72 85.7 1.73

1.73

fi3 = 1.73 while fi; = 29.6.
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Introduction : Robustness in high dimension F mean estimation an estimation in any norm Stahel-Donoho Esti

® Choosing K = C1[|O] V log(1/4)], we get

Theorem (Devroye and al-2016)

With probability > 1 —§,

. log(1/6

ik —pl S o (N/) v
° 0 W — robustness to heavy-tails, optimal [Catoni, 2012].
° — robustness to outliers, optimal [Diakonikolas, 2016].
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Key Insights of the proof

What does the median bring 7

® For robustness to heavy-tail, we want strong (exponential)
probability bounds — Hoeffding's inequality — bounded variables.
® Median in [u—r,u+r] < Z =31 1g clurpin > 1/2K
— we study the deviation of Z, a sum of bounded variables.

® Hoeffding's failure probability ~ e=X — we take K > log(1/9)

o If K > 4]|O|, no more than 1/4 of block is corrupted. If some
property is true for a fraction « of the "initial" blocks, it will still be
true for a fraction > o — 1/4 after corruption.
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Litterature review

MOM principle appeared in:
® 1983 - [Nemirovsky and Yudin] — Stochastic optimization
® 1986 - [Jerrum, Valiant and Vazirani] — Computer science

® 2002 - [Alon, Matias and Szegedy] — Space complexity of an
algorithm

Application of the MOM principle in

® Multi-armed bandit problem : [Bubeck, Cesa-Bianchi, Lugosi,
2013]

® Robustness to heavy-tail : [Hsu, Sabato, 2013], [Devroye,
Lerasle, Lugosi, Oliveira, 2016]

® Regression : [Hsu, Sabato, 2013], [Minsker, 2015],
® [earning theory : [Brownless, Joly, Lugosi, 2015], etc.
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By what should we replace the Median ?

— Coordinate-wise median of means

ya

_ Jge /M d/5 )+ O In Te(2)in(d/5) ST

— Wrong rate !
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By what should we replace the Median ?

— "Geometric median" of means or Fermat Point

fi = argmin, Z | X« — al
k

Vo \/In(l/d ) In (1/9) ST

rs =

— Wrong rate !
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A graphic illustration of LM 17.

® |dea : quantile of block-mean in all possible directions !

e e P
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A graphic illustration of LM 17.

® |dea : quantile of block-mean in all possible directions !
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Looks like...

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems

= — ——f= —

\ |
| )

(v 5

| |
|

i )
i ]
) a |
! \
\

\ |
\ - =1 - —

Jules Depersin



A graphic illustration of LM 17.

® |dea : quantile of block-mean in all possible directions !
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A graphic illustration of LM 17.

® |dea : quantile of block-mean in all possible directions !

v, AR 7
—D Vs \\?O /‘
7

Statistical and Computational Complexities of Robust and High-Dimensional Estimation Problems Jules Depersin



Def. Forall ve 8§t W, : p € (0,1) — H\(,_l)(p)

N/K

dvrdt

Hv(r) 71/2 ), V> 2 r

Hypothesis: 30 < € < 1/4, ¢/(€) < @, (€) so that Vv € 8§71,

o (3 ) () 30 s

and

o 0 ) () () 22 0
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